
Genetic Programming of Autonomous Agents

Functional Requirements List and Performance Specifi cations

Scott O'Dell

Advisors: Dr. Joel Schipper and Dr. Arnold Patton

November 23, 2010



GPAA 1

Project Goals
The purpose of this project is to use genetic programming to develop control programs for  

autonomous vehicles. The initial focus shall be to implement a genetic programming  

framework. This framework will be used to evolve a guard agent that maintains a secure 

perimeter around a base which is being approached by enemy agents. This goal has the 

potential military application of using autonomous agents to protect an area or escort a  

convoy.

During early development, the project shall use crude, grid-based simulations to simplify the  

problem and to ascertain that the function set, terminal set, and fitness function are sufficient  

to meet the project's goals. As the project progresses, it shall use more complex simulators  

until the simulations approximate the continuous navigation and environmental noise of a  

physical autonomous agent. If time remains, the project shall focus on implementing the  

evolved programs on a physical system.

Top Level Description
The code written to connect the subcomponents shall be written in Ruby to simplify the  

process of interfacing subcomponents. If a simulator written in a different language becomes  

necessary as the project progresses, interface code will be written rather than re-

implementing the entire system in the new language. Figure 4 shows the relation of software  

subcomponents.

To begin the simulation, a function set, a terminal set, and reproduction parameters will be  

provided to the genetic programming evolutionary sequence (GPES) block, which will  

organize the progression of generations. The randomly produced genomes of the first  

generation will be passed to a fitness function block that handles communication between the  

GPES and simulator subcomponents. The genomes are used to control guard agents in the  

simulator. The interaction of guard, enemy, and base agents within the simulator will  

determine the fitness of the genome. These fitness scores are passed back to the GPES where  

a new generation will initialize genomes by performing genetic operations on genomes of the  

previous generation. This process will continue until generation N is evaluated for fitness.



GPAA 2

Subcomponent Descriptions
The final implementation of each subcomponent will depend heavily on problems discovered  

during early experiments. The general algorithm, however, shall remain largely unchanged.

Function and Terminal Set
The following set is designed to be as small as possible to avoid redundancy (which adds  

inefficiency to the evolution process) while still allowing the agent to:

 know its distance from the base,

Figure 1: Top Level Software Architecture of Genetic Programming System



GPAA 3

 move to catch enemies,

 make logical decisions based on sensor inputs. 

All these attributes are necessary to create sufficiently complex behavior.

The function set includes:

 prog 

◦ accepts 2 subtrees,

◦ evaluates the subtrees in sequence,

◦ returns the value of the second evaluated subtree,

◦ allows multiple calculations and movements to be made each program iteration.

 ifGreater 

◦ accepts 4 subtrees,

◦ evaluates the 3rd or 4th subtree based on the value of the 1st and 2nd subtrees,

◦ pseudo code: if(1st > 2nd) then 3rd else 4th,

◦ returns the last evaluated subtree,

◦ allows agent to perform different actions based on sensor inputs.

 +, -, *, /, and %

◦ accepts 2 subtrees,

◦ performs standard arithmetic calculation of evaluated subtree values,

◦ division by zero results in value '1' [1],

◦ allows agent to develop complex input weighting systems.

The terminal set includes:

 perim 

◦ returns Manhattan distance from the base,

◦ allows agent make decisions according to its distance from the base.



GPAA 4

 f, l, and r 

◦ causes agent to move forward (f), turn left (l),  or turn right (r),

◦ returns same value as perim.

 I

◦  returns random integer (0-6),

◦ generated during creation of genome, not during execution of program.

Genome Class
The genome class creates and stores program trees to be analyzed by the fitness function.  

Objects created from this class must:

 create random program trees from the function and terminal sets,

 create program trees from parents using crossover, mutation, and reproduction,

 store an evaluated fitness value.

The genetic material produced by this class shall  

be used on a variety of platforms with different 

programming languages. It is a common practice  

in this situation to use string representation 

for the genomes [1]. Because strings are supported  

by most languages, the genome will not have to be  

converted into a different data structure. String  

representation also has the advantage of  

minimizing the space needed to store a program.  

For example, the translation of the Pythagorean  

Theorem - a2b2  - into the Lisp 

programming language is:

(sqrt (+ (expt a 2) (expt b 2)))

This Lisp program can then be translated into program tree form as seen in figure 2. To  

convert this program tree into a string representation, each primitive must be given a unique  

character to represent it.

Figure 2: Tree Representation of  
Pythagorean Theroem



GPAA 5

 's' – square root, accepts 1 argument

 '+' – addition, accepts 2 arguments

 'p' – power, accepts 2 arguments

 'a' – input representing the first leg of a right triangle

 'b' – input representing the second leg of a right triangle

 '2' – integer value 2

Using these character representations, the genome object for this program would store the  

string “s+pa2pb2”. To execute the string representation in different languages, a string 

representation interpreter  must be written for each language.

Generation Class
The generation class organizes the creation and storage of genome objects. Objects created  

from this class must:

 store an array of genome objects that represent the generation's members,

 create random genomes for the first generation,

 produce a new generation based on the fitness scores of the previous generation,

 identify the most fit individual in the generation.

After each genome in a generation is evaluated using the fitness function, a new generation  

object is created. The new generation calls the old generation to provide parent genomes  

using a combination of fitness proportional selection  and tournament selection. In 

fitness proportional selection, each genome's chance of being selected for reproduction is  

equal to its fitness score divided by the sum of all fitness scores in the generation. In  

tournament selection, a group of genomes is randomly selected (group size is specified in the  

reproduction parameters) and the genome with the highest fitness score is chosen for  

reproduction. The new generation will use these methods to create and store genomes until  

the population size (specified in the reproduction parameters) is met.



GPAA 6

Genetic Programming Evolutionary Sequence Class
The genetic programming evolutionary sequence class organizes the creation and storage of  

generation objects. Objects created from this class must:

 store an array of generation objects that represent a genealogy,

 organize the creation of generations with a specific number of genomes,

 organize the creation of a specific number of generations,

 send each genome to the fitness function to evaluate,

 present the most fit individual produced by the sequence.

When writing a script to perform a genetic programming sequence, this class eliminates the  

need to deal with genomes and generations directly. After each generation is produced, this  

class passes each genome of the current generation to the fitness function for evaluation.

Guard Class
The guard class is used to represent guard agents during simulation. Objects created from this  

class must:

 store a genome created from the genetic programming evolutionary sequence,

 use the genome as a means of controlling its movements during the simulation.

The guard class includes a string representation interpreter to execute a genome as a control  

program. Any time the interpreter evaluates a primitive that changes the state of the guard,  

that command is placed into a command buffer. The guard then executes one command per  

simulation time-step until the command buffer is empty. The genome is only evaluated when  

the command buffer is empty.

Enemy Class
The enemy class represents enemy agents during the simulation. In early experiments, the  

control program for this class will be hard-coded to start near the edge of the simulation space  

and move directly toward the nearest base. During later experiments, the enemy class may be  

updated to include a string representation interpreter so the GPES can simultaneously evolve  

guards and enemies. Results from GP research suggest co-evolution of opponents leads to  



GPAA 7

results with less exploitable weaknesses [2].

Base Class
The base class represents the base agent during the simulation. The base will not need a  

control program because it will remain stationary during early experiments. Later in the  

project, a control program may be implemented to allow the base to move randomly or in a  

specified direction in order to evolve more robust control programs for the guard agents that  

can protect moving convoys.

Simulator
The simulator shall be used by the fitness function to produce a fitness score that represents  

the genome's effectiveness as a perimeter maintenance control program. Objects created from  

this class must:

 accept parameters to modify size, simulation time, rules for collision, etc.,

 accept objects created from the guard, enemy, and base classes and signal,

 call agents to execute their control program on each step of the simulation,

 return an accurate fitness measure of the genome.

During early experiments, the simulated environment shall be grid-based, only allowing  

agents to move north, south, east, or west. Figure 3 presents a visualization of the grid-based  

simulator. After the framework produces a controller that functions optimally in the grid-

based domain, the simulator shall be rewritten to allow continuous movement. An increase in  

simulation complexity can often prevent optimal behaviors from evolving. Others [3] have  

solved this problem by using function and terminal sets that embody complex behaviors  

consisting of several steps. Eventually the simulator may include noise in the sensor  

measurements and in agent movement.



GPAA 8

Fitness Function
The fitness function is called by the genetic programming evolutionary sequence class and  

returns the fitness value of each genome. The fitness value is determined by the guard agents'  

behavior during a simulation. The fitness function initializes enemy agents, base agents, and  

guard agents, then begins a simulation. When a guard captures a enemy its fitness score will  

increase. More points are awarded for capturing enemies further from the base. Negative  

points are given if the enemies hit the base. Varying values of these rewards will result in  

different behaviors in the guards. If large rewards are given for capturing an enemy far from  

the base, the guards will evolve to create a large but very imperfect perimeter. If rewards are  

solely based on the number of enemies captured, the guards will cluster around the base. It  

will therefore be necessary to adjust rewards to yield effective guards.

Figure 3: Visualization of Grid-World Simulator Running Perimeter Maintenance Simulation



GPAA 9

Robotic Platform
If experimentation shows that a highly fit guard control program is able to evolve in a  

complex simulator environment, the project will proceed by attempting to implement the  

control program on a physical autonomous agent. In order for the platform to execute a  

genome created by the genetic programming evolutionary sequence, the software must:

 contain a string representation program interpreter,

 contain motor control routines that result in movement as specified by the function  

and terminal sets,

 contain sensor processing routines that result in sensor data as specified by the  

function and terminal sets.

Even if the simulation environment produces favorable results, robotic platforms generally do  

not behave as expected [4]. To produce a functional robot, the simulator must be customized  

to precisely model the robot and target environment.



GPAA 10

References

[1] R. Poli, W. B. Langdon, and N. F. McPhee, A field guide to genetic programming . 

Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk,  

2008. (With contributions by J. R. Koza).

[2] J. Koza, Genetic Programming: on the Programming of Computers by Means of 

Natural Selction. Cambridge, MA: MIT Press, 1992.

[3] S. Luke, “Genetic Programming Produced Competitive Soccer Softbot Teams for 

RoboCup97” in Genetic Programming 1998: Proceedings of the Third Annual 

Conference, pp. 214-222.

[4] J. Cohn, J. Weaver, and S. Redfield, “Cooperative Autonomous Robotic Perimeter 

Maintenance,” in Florida Conference on Recent Advances in Robotics 2009 

Proceedings.


	Function and Terminal Set
	Genome Class
	Generation Class
	Genetic Programming Evolutionary Sequence Class
	Guard Class
	Enemy Class
	Base Class
	Simulator
	Fitness Function
	Robotic Platform

